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Abstract

Stereo correspondence is hard because different image features can look alike. We propose a

measure for the ambiguity of image points that allows matching distinctive points first and

breaks down the matching task into smaller and separate subproblems. Experiments with

an algorithm based on this measure demonstrate the ensuing efficiency and low likelihood of

incorrect matches.



1 Introduction

The crux of stereo matching is image ambiguity. If two features in the same image look

alike, it may be impossible to find their corresponding features in the other image based

only on local appearance, and global reasoning must intervene. For instance, the columns

of the colonnade in Canaletto's palazzo ducale in figure 2 are very similar to one another,

and knowing which column in one image matches which column in the other may involve

counting columns from some distinctive reference point.

!

Most existing stereo algorithms discover ambiguity post facto. They first generate match

candidates based on local similarity measures, and label features with multiple matches as

ambiguous. A second stage then attempts to resolve ambiguous cases by imposing global

consistency constraints. This generate-and-test approach works hard to produce a large

number of match candidates, and then works harder to eliminate the bad ones.

In contrast, we propose a measure of image distinctiveness that allows sorting image

points in order of increasing ambiguity before matching begins. If distinctive, that is, low-

ambiguity points are matched first, the correspondence problem is broken down into a num-

ber of smaller ones. If the left-to-right ordering of features is preserved across images, a

safe assumption in most cases, then each subproblem is restricted to pairs of corresponding

epipolar line segments that lie between two of the given matches. Thus, the "safe" matches

constrain the less safe ones, resulting in both fewer incorrect matches and a greater efficiency.

It is important to distinguish distinctiveness (or its opposite, ambiguity) from what is

called "interest" in the computer vision literature [2, 6]. Interest operators are local, and

detect image points that have sufficient texture for matching. Very interesting points can be

highly ambiguous, like the edges in a periodic pattern. On the converse, distinctive points

are not necessarily rich in texture. Interesting points ensure good match accuracy;, distinctive

points ensure low probability of mismatch. If the correspondence problem is formalized in

terms of the minimization of a cost function, inaccuracy is equivalent to poor h)calization of

2



the global minimum; mismatch is equivalent to choosinga wrong local minimum. Perhaps

due to the difficulty of finding an adequate model, the analysis of mismatches has received
_v

much less attention in the literature than the analysis of match accuracy.

Loosely speaking, the ambiguity of a point is characterized by the difference in appearance

from the most similar other point on the same epipolar line. Thus, an image location

is ambiguous if there is some other location that looks similar to it. While ambiguity is

measured in a single image, it is used for matching stereo pairs. It therefore stands to

_reason that the similarity metric used for measuring ambiguity be the same as the one

used for stereo matching. In other words, different similarity metrics used for stereo imply

different measures of ambiguity. We give a precise definition of distinctiveness, the opposite

of ambiguity, in section 2.

Distinctiveness maps may be used to speed up stereo algorithms, by means of a hierar-

chical scheme. If the most distinctive points in an epipolar line are matched first, then the

segments of epipolar line lying between two consecutive distinctive points may be matched

independentely by virtue of the ordering principle [3]. A fast divide-and-conquer strategy

based on such observation is presented in section 3. Section 4 has the conclusions.

2 Distinctiveness maps

The yellow and blue plumage of a toucan produces a visually distinctive blotch amidst the

green of a jungle. In a stereo image pair of this jungle scene, the toucan is trivial to match. If

we consider an epipolar line cutting through the bird's plumage, determining correspondences

for the remaining pixels is probably hard, since everything is green and most leaves look the

same. This example shows why some image locations are easy to match, while others are

not. Distinctive features are unique, and look like nothing else in the picture, or at least

along the epipolar line. Ambiguous points, on the other hand, are similar to many others.



Their local appearanceis inadequatefor determining stereocorrespondence.

At the sametime, the distinctive featureshelp matching the ambiguousonesas well. In

fact, foliage that is on the left of the toucan in the left imagematchesfoliage that is on the

left of the bird also in the right image. This is the ordering constraint [3], which is violated

only in rare cases like with a thin pole in the foreground, well away from the background.

Barring these extreme cases, the ordering constraint can be used to leverage distinctive

features in order to facilitate the establishment of correspondence for the more ambiguous

simage locations. In fact, before matching the toucan, every pixel in the left epipolar line

can in principle be a match candidate for every pixel in the right one. After matching the

toucan, on the other hand, the correspondence problem is broken into two smaller ones: one

is for the two segments of epipolar line to the left of the toucan, the other is for the two

segments to its right. Candidate matches that take pixels from both sides of the toucan are

disallowed. In short, if distinctive features can be matched first, divide-and-conquer can be

applied to stereo matching.

The distinctiveness of a point is not an absolute measure, but is subordinate to the

chosen matching strategy. Section 2.1 defines the basic parameters of interest of stereo

algorithms. Section 2.2 introduces our definition of distinctiveness, and section 2.3 presents

some examples of distinctiveness maps for the case of correlation-based matching.

2.1 Basic parameters

Stereo algorithms can be roughly characterized by the following parameters:

1. The local descriptors, which are vectors that encode the local profile of the image. More

precisely, the local descriptor of the image at point x is a vectorial transformation of

the brightness within an analysis window W_ centered in x. Ideally, descriptors are

invariant with respect to the geometric transformations of interest.
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2. The perceptual metric, which measures the similarity of image points by the distance

of the corresponding descriptors.
¢,

3. The search window Ws, which determines the largest disparity that can be measured

by the algorithm. A large baseline requires a large search window, which implies high

computational cost and high probability of mismatches.

For example, SSD-based correlation algorithms measure the euclidean distance between

local descriptors formed by the values of the pixels within the analysis window. Filter-based
f

algorithms [5][4][8] generalize the correlation idea, and represent local brightness profiles by

means of vectors formed by the output of a bank of filters. Kass [5] and Jones and Malik [4]

use banks of multiscale/multioriented filters, and use L2 or L1 perceptual metric. Tomasi

and Manduchi [8] measure the local Taylor expansion of the brightness and use an ad-hoc

perceptual metric for the fast and robust computation of nearest neighbors in the descriptors'

space.

2.2 Distinctiveness: a formal definition

Two points in two different images are similar when their perceptual distance is small. The

same concept applies to two points of the same image, suggesting the following definition of

distinctiveness:

Definition 1. (distinctiveness in the discrete case) The distinctiveness of an

image point x is equal to its perceptual distance to the most similar other point

in the search window.

We may also define the ambiguity of a point as the inverse of its distinctiveness. If within

the search window there is another point which looks exactly like x, then x is infinitely

ambiguous: the risk of mismatch for such a point is very high.



This simple definition of distinctiveness must be modified for the continuous case, where

the notion of "most similar other point" may not make sense. Let dx(s) be the perceptual
¢'

distance between points x and x + s. Consider the set of maximally connected regions of

Ws formed by the points where the gradient of d,(s)vanishes. We pick any one point from

each such regions, excluding the one containing the origin, to form the set of "characteristic

local extrema" M.

Definition 2. (distinctiveness in the continuous case) The distinctiveness of the

image point x is defined as

f mins_M d,(s)
D(x) =

( 0

if M is not empty

if M is empty

(1)

Note that even points in segments of constant brightness (such as stripes or blobs) may be

distinctive, as long as they are structurally different from the background. Such points are

not considered interesting by standard local feature operators; in fact, they can be precious

"anchor points" for reliable (albeit not necessarily accurate) matches.

2.3 An example: SSD-based matching

SSD-based matching techniques are very popular for stereo matching. The surface dx(s),

which measures the perceptual difference between x and the points within the search window,

corresponds to the auto-SSD function

SSD,(s) = r, (l(z + _) - l(. + _ + s))_ (2)
_EW,

The auto-SSD profilearound a point x contains precious information about the expected

goodness of match. For example, itsflatnessin correspondence of the originmeasures the

expected match accuracy. On the other side,the riskof mismatch can be estimated from
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Figure 1: (a) Original image. (b) SSD-based distinctiveness map (Wa=5x5 pixels; W,=21x21 pixels).

the distinctiveness of x, which is equal to the height of the smallest minimum of SSD_(s)

beside the one in the origin.

We have applied the SSD-based distinctiveness operator to the image of figure 1 (a) with

an analysis window Wa of 5x5 pixels and a search window W'8 of 21x21 pixels. In this image,

the vertical stripes stand out distinctively, while the oblique edges form a periodic pattern,

more prone to mismatch. In figure l(b) we show the image points with distinctiveness

above the average. The measured distinctiveness map agrees with our expectations: only

the vertical stripes and the most outstanding oblique patterns are ranked distinctive.

As pointed out earlier, our definition of distinctiveness is subordinate to the choice of a

particular matching system. Most stereo algorithms match epipolar lines, which is equivalent

to constraining the search window height to just one pixel. We have computed the distinc-

tiveness map of the Canaletto image in figure 2(a) using one-dimensional search windows.

Figures 2 (b), (c) and (d) show the points with distinctiveness above the average for search

windows of lx21, lx41 and lx61 pixels respectively (an analysis window of 7x7 pixel has

been used in all three experiments.)

It is interesting to analyze the results in correspondence of the periodic patterns formed

to the columnade. Using the lx21 search window, the colunms in the upper row are ranked
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Figure 2: (a) Original image. (b),(c),(d) SSD-based distinctiveness map (H/a=7x7 pixels; (b) Ws=lx21

pixels; (c) Ws=lx41 pixels; (d) Ws=lx61 pixeis).

distinctive. However, since their repetition period is smaller than 41 pixels, they become

ambiguous when the larger windows are used. A stereo algorithm with a search window of 41

pixels or more would be prone to mismatch these points. When the largest search window is

used, also the wider columns in the lower row are ranked ambiguous. However, the flagpole

on the left, as well as the window high above, are ranked distinctive in all three cases.

3 An application: hierarchical stereo

The selection of image features is at the basis of a number of classical stereo algorithms

[1],[7]..After feature extraction, matches are computed in a sequence of two steps.

First, each feature point in one image of the stereo pair is assigned a number of "candidate

matches" in the other image. The selection is done according to criteria of spatial proximity

and perceptual closeness. In other words, the candidate matches are the most similar features

that lie inside the search window in the other image.

8



Second, the chain of correspondences which maximizes a global quality measure while

satisfying the criteria of uniqueness, ordering and smoothness, is selected from the pool of

candidates. The global quality measure is a function of the perceptual distances of the

candidate matches in the chain. This "disambiguation" task can be computationally very

expensive, even when resorting to dynamic programming implementations [1][8].

In order to reduce the computational load of the process, we propose a hierarchical scheme

that matches a set of distinctive points first. Once these highly distinctive points have been

_matched, the process is divided into a number of smaller subprocesses, by virtue to the

ordering constraint. In other words, given any two consecutive distinctive points xi, xi+l,

and their corresponding matches y_, Y1+1 found in the other image, the points in the segment

[x_, x_+_] are matched only with points in the segment [y,, Y,+d- It can be easily proved that

this divide-and-conquer strategy effectively reduces the overall computational load.

Our hierarchical scheme can be implemented on top of almost any existing stereo algo-

rithm. For our experiments we have adopted the algorithm of Tomasi and Manduchi [8],

which uses the intrinsic curve representation of scanlines to determine candidate matches.

An intrinsic curve is the path formed by the descriptor as we move along the scanline, and

therefore is invariant to image shift. Finding a candidate match then becomes a nearest

neighborhood problem in the descriptors' space, which can be solved efficientely by using a

suitable representation of the curves. For the same reason, finding the distinctiveness of a

point (which corresponds to finding the "nearest neighbors" on the same curve) is a very

fast operation.

We have tested the hierarchical stereo algorithm on two stereo pairs, the "Clorox" pair

from Stanford University (figure 3) and the "Castle" pair from CMU (figure 4) (the images

have been preciously subsampled by two along the horizontal and vertical axes.) The stereo

pair "Clorox" is characterized by a very articulated depth field, with occlusions at the borders

of the objects. The pair "Castle" shows patches with periodically repeated patterns.



The computed disparity mapsare representedwith pseudocolorst. The upper part of

each image in the figures (above the epipolar scanline drawn in black) represents the left

image in the stereo pair, the lower part is the right image. No postprocessing has been

performed on the computed disparities. The algorithm uses an adaptive resampling strategy

that concentrates matches where the signal "business" is high [8]. This is the main reason

for the sparseness of the computed disparity values, another reason being that a match is

accepted only when its quality is above a certain threshold.

f Beside being computationally efficient, the least-ambiguous-first technique reduces the

risk of mismatches. This is shown here by way of examples in correspondence of the image

patches highlighted in the figures. The original full-rate sampling period has been retained

in these figures. In the case of figure 3, the periodic pattern corresponding to the keys of

the calculator is a potential occasion for mismatch. This appears clearly by plotting the

intensity in the two scanlines, as in the first plot of the figure (the solid line corresponds to

the left image, the dashed line to the right image). The second plot shows the normalized

distinctiveness of the points in the left scanline. It is rather difficult to correctly match by

hand the peaks of the two signals, unless one uses the dark calculator's edge as a reference

point. As expected, this is where the distinctiveness has its maximum.

For the piece of scanline shown in the figure, we first selected and matched five highly

distinctive features, obtaining the correct disparity estimates depicted with dashed lines

in the third plot. Then, the scanline segments between the correspondences found in this

first stage have been matched independently, producing the disparity values depicted with

solid lines in the plot. No mismatch occurred with this procedure. As a counterexample,

we repeated the experiment and selected five highly ambiguous features in the first stage;

the results are shown in the fourth plot. Because of ambiguity, such features have been

1A somewhat less readable black-and-white image will be substituted if color is not allowed in the

proceedings.
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Figure 3: Matching experiments with the test stereo pair "Clorox". The images have been previously

subsampled by two along the horizontal and vertical axes. The left image is shown above the dark scanline,

the fight image is shown below• The computed disparity field is represented with pseudocolors. The first

plot shows the full-rate intensity profile in the scanline corresponding to the highlighted area (solid line: left

image, dashed line: right image.) The second plot shows the normalized distinctiveness function relative to

the scanline in the left image• The third plot shows the disparity estimates obtained with the hierarchical

stereo algorithm; the values computed in the first stage are depicted with dashed line. The fourth plot shows

the results in the case the most ambiguous points are matched first.
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Figure 4: Matching experiments with the test stereo pair "Castle" (see caption of figure 3.)

12



mismatched, constraining the subsequent stage to detect wrong matches.

A similar study case is shown in figure 4 for the "Castle" couple. Here, the textured

pattern on the houses' facades is interrupted by a fiat white area, corresponding to the

houses' roofs. The distinctiveness map reveals such a region, and the match is best performed

starting from these more distinctive points.

4 Conclusions

I

We have shown in this paper that distinctiveness, and not interest, is the appropriate criterion

for feature selection in stereo matching. Distinctiveness is global, and subsumes the local

notion of interest. Distinctive points are conceptually similar to outliers in a statistical

model; they are the features that stand out most clearly in the image, and represent reliable

"anchor points" for matching. Based on this intuition, we have proposed an hierarchical

stereo algorithms that matches distinctive points first. This early commitment strategy can

reduce the computational load effectively, at the same time minimizing the probability of

mismatches.
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